Subsurface Temperature and Pressure

- I. Subsurface Temperature
 - a. BHT bottom hole rock temperature from well and drill stem testing
 - b. Geothermal Gradient
 - i. Range 1.8 to 5.5 °C / 100m
 - ii. Average: 2.5 °C / 100 m (25 °C / 1 km)
 - c. Heat Flow
 - i. Heat Flux = Geothermal Gradient x Thermal Conductivity of Rock
 - 1. transfer of heat energy per unit area
 - 2. Units: watts $m^{-2} = ({}^{\circ}C m^{-1})(W m^{-1} {}^{\circ}C^{-1})$
 - 3. Watt = power = energy transfer per unit time
 - a. 1 watt = 1 joule/sec = 1 N-m/sec
 - ii. Rock Thermal Conductivity: function of porosity and depth of burial

Lithology Thermal Conductivity (W/m °C)

Halite	5.5	
Limestone	2.8-3.5	
Sandstone	2.6-4.0	Moral of Story: rock is a good insulator in general
Shale	1.5-2.9	
Coal	0.3	

Steel Bar Compa	arison~50
Aluminum	~150

iii. Bottom Hole Temperature Range

- 1. Gulf Coast U.S. 15,000 20,000 ft depth ~350 F = 175 C
- 2. Rio Grande Rift 15,000 20,000 ft depth ~375 F = ~180 C
- 3. Deccan Rift India 15,000 ft depth, max temp ~390 F = ~190 C

II. Subsurface Pressure

- a. Pressure = force per unit area
 - i. Force = push or pull action
 - 1. Measured in newtons
 - ii. Pressure = force / area = N/m^2 = Pascal (Pa)
 - 1. Subsurface Pressure = weight / area = mass x g / area
- b. Overburden Pressure = total weight exerted per unit area of subsurface by rock material and fluids
 - i. Lithostatic pressure = weight of rock material per unit area, transmitted through graingrain contacts into subsurface
 - ii. Fluid Pressure or "Pore Pressure"
 - 1. Hydrostatic Pressure = weight of fluids in pore space
 - 2. Hydrodynamic Pressure = fluid pressure related to potentiometric surface

Total Overburden Pressure = Lithostatic Pressure + Fluid Pressure

- a. Lithostatic and fluid pressure are inversely proportional
- b. Fluid Pressure >, Lithostatic Pressure <; and vice versa
 - i. > Fluid Pressure analogous to "hydraulic lifting" of subsurface materials, with net decrease in downward directed weight

- iii. Example Pressure Gradients
 - 1. Lithostatic Pressure Gradients- variable depending upon fluid pressure, common 1 psi/ft of depth
 - 2. Hydrostatic Pressure Gradients (temperature dependent; based on weight density)
 - a. Water: 0.465 psi/ft
 - b. Oil: 0.35 psi/ft
 - c. Gas: 0.1 psi/ft

In-class Problems:

- 1. Assuming a lithostatic pressure gradient with depth of 1 psi/ft; determine the total lithostatic pressure in psi and kPa at the base of an 8000 ft section of sedimentary rock. Show all of your math work and unit algebra.
- 2. Assuming a fresh water pressure gradient of 0.465 psi/ft; determine the total hydrostatic pressure in psi and kPa for a lake that is 500 m deep. Show all of your math work and unit algebra.

3. Hydrodynamic Pressure – fluid potential gradient that drives flow to the well; defined by the elevation of the potentiometric or piezometric level to which fluids will rise in a well above it's base

Elevation of Potentiometric Level = (P/W) - (D - E)

Where P = bottom hole pressure (psi) W = unit weight of fluid (psi/ft) D = Depth (ft) E = surface elevation of well at drilling platform above sea level (ft)

a. Potentiometric Elevations may be contoured from a well network to define the potentiometric surface and define directions of fluid flow.

In-Class Problem:

A well with a surface elevation of 1200 ft AMSL is drilled to a depth of 7000 ft with a bottom hole pressure of 2700 psi. The hydrostatic pressure gradient is 0.465 psi/ft; determine the potentiometric surface elevation (elevation to which fluid will rise in well). Show all of your math work and unit algebra.

- c. Reservoir Pressure Conditions
 - i. Normal: pressure gradient = hydrostatic
 - ii. Overpressure: > hydrostatic
 - 1. Artesian conditions
 - 2. Structural/tectonic compression

 - iii. Subnormal: < hydrostatic1. Isolated confined aquifers or reservoirs
 - 2. Overdeveloped sealed reservoirs
 - 3. Fracturing / fluid loss